
March 2016
Number 49

 1 Know How...
 Speed in Object Creation and
 Destruction
 Tamar E. Granor, PhD

 7 Deep Dive
 Taking Advantage of the Windows API
 Doug Hennig

 13 Future
 “We Want To Go To SQL”
 Whil Hentzen

 16 VFPX
 Thor – Creating and Sharing Tools
 Rick Schummer

Speed in
Object
Creation and
Destruction
Does the approach you choose for
creating and destroying objects have
an impact on performance?

Tamar E. Granor, Ph.D.

A client asked me to speed up part of an applica-
tion. In doing so, I was forced to re-evaluate one
of my personal best practices: using NewObject()
rather than CreateObject() to instantiate objects.
One of my goals is to let each line of code I write
stand alone as much as possible. So, for example,
I always include the IN clause to specify the work
area for any command that accepts it. Similarly, I
prefer to use NewObject() to create objects rather
than CreateObject(), because the latter assumes that
the right class library has already been identifi ed
via SET CLASSLIB or SET PROCEDURE.

But a few months ago, a client asked me to see
if I could speed up a key process in their applica-
tion. Data from this application is stored as XML
and, at the user’s request, read into tables, and then
converted into a complex object hierarchy. For a
small dataset, the hierarchy might contain 1,500
objects; for a large one, perhaps 30,000.

Users were fi nding the process of converting
from XML to DBFs to objects painfully slow. In the
process of speeding it up, I compared the perfor-

mance of CreateObject() and NewObject(). I found
that CreateObject() was faster by about a third, so
changed the application to use CreateObject for
almost all object instantiation.

When I presented these results at Southwest
Fox 2015 as part of a session on optimization, some
interesting questions were raised about the speed
of both instantiating and destroying objects. So I
decided to dig deeper.

Quick review
Both CreateObject() and NewObject() can be used
to instantiate classes from either VCX-based class
libraries or PRG-based code classes. The primary
difference between them is that NewObject()
accepts a parameter to specify the class library
(either VCX or PRG). CreateObject() expects to fi nd
the specifi ed class in either a VCX or a PRG that has
already been specifi ed via SET CLASSLIB or SET
PROCEDURE. Listing 1 shows a simple example of
each.

Page 2 FoxRockX March 2016

Listing 1. With CreateObject(), the class definition must
already be visible, while NewObject() lets you specify the class
library on the fly.
LOCAL o

* With CREATEOBJECT(), make sure to
* SET CLASSLIB first
SET CLASSLIB TO MyClasses
O = CREATEOBJECT("cusMyClass")

* With NEWOBJECT(), you can specify the
* class library directly.
O = NEWOBJECT("cusMyClass", "MyClasses")

Given the additional work it must do to find
the right class library, it’s not surprising that
CreateObject() is somewhat faster than NewObject().
What I wanted to know was how much faster
and under what circumstances. Because the same
application seemed very slow when closing, I was
also interested in the speed of destroying objects,
and whether some ways of doing so might be faster
than others.

Test methodology
As I mentioned in my last article, doing timing tests
in Windows is tricky. For these tests, I did my best
to make sure not to have side effects that would
interfere with accuracy.

I ran each test on two different machines, clos-
ing any applications I could that might be doing
things in the background. On my notebook, I ran
one set of tests across my network (that is, using
class libraries stored on a different machine) and
one set locally. For the local tests on the notebook, I
disconnected from the network.

Most importantly for these tests, after each
individual test, I shut down VFP and restarted it to
avoid caching effects.

My test code is included in this month’s down-
loads as ObjectCDTests.PRG. (The classes used for
testing are in ClassDefs.VCX, also included in this
month’s downloads.) The program accepts three
parameters: a code for which test to run, a one-char-
acter code to identify the machine it’s running on,
and a flag to indicate whether it’s running locally or
across the network. Listing 2 shows a sample call.

Listing 2. This line calls my program for testing object creation
and destruction speed. This call runs test 3c on the laptop
across the network.
DO ObjectCDTests.PRG WITH "3c", "L", .T.

The program is a giant CASE statement with a
separate case for each test. Tests of the same thing
use the same number, and are then lettered to dis-
tinguish them. For example, tests 1a through 1f
test different ways of instantiating an object, while
tests 2a through 2e test whether different ways of
storing object references have an impact on instan-
tiation speed. All told, there are nine sets of tests.
Listing 3 shows one case. All the cases use the

same basic structure; in particular, they all set up
nPasses, nStart and nEnd and use a DO WHILE
loop to manage the timing test.

Listing 3. Each test is one case in a large CASE statement.
CASE m.cTest = "1a"
 * CreateObject() assuming SET CLASSLIB
 SET CLASSLIB TO ClassDefs.VCX
 nPasses = 0
 nStart = SECONDS()
 nEnd = CalcEndTime(m.nStart, TESTTIME)

 DO WHILE m.nEnd >= SECONDS()
 nPasses = nPasses + 1
 oObject = CREATEOBJECT("cusMinimal")
 ENDDO

 SET CLASSLIB TO

CreateObject() vs. NewObject
The first set of tests compare different ways of
instantiating an object. Altogether, I tested six
approaches to instantiating multiple copies of a
single class:

1a) SET CLASSLIB once, then instantiate mul-
tiple instances with CreateObject() (Listing 3);

1b) Issue SET CLASSLIB right before each
instantiation with CreateObject() (Listing 4);

1c) SET CLASSLIB once, then instantiate mul-
tiple instances with NewObject();

1d) Do not SET CLASSLIB, instantiate multiple
instances with NewObject();

1e) SET CLASSLIB once, then check whether
classlib is already set before each instantiation with
CreateObject() (Listing 5);

1f) Do not SET CLASSLIB, then check whether
classlib is already set before each instantiation with
CreateObject().

Listing 4. This case tests CreateObject() with an explicit SET
CLASSLIB for each instantiation.
CASE m.cTest = "1b"
 * CreateObject() with explicit SET CLASSLIB
 nPasses = 0
 nStart = SECONDS()
 nEnd = CalcEndTime(m.nStart, TESTTIME)

 DO WHILE m.nEnd >= SECONDS()
 nPasses = nPasses + 1
 SET CLASSLIB TO ClassDefs.VCX
 oObject = CREATEOBJECT("cusMinimal")
 SET CLASSLIB TO
 ENDDO

Listing 5. This code checks whether the appropriate class
library has been set and SETs it, if not. In this test, it’s already
set.
CASE m.cTest = "1e"
 * CreateObject() checking
 * SET CLASSLIB first
 SET CLASSLIB TO ClassDefs.VCX
 nPasses = 0
 nStart = SECONDS()
 nEnd = CalcEndTime(m.nStart, TESTTIME)

March 2016 FoxRockX Page 3

 DO WHILE m.nEnd >= SECONDS()
 nPasses = nPasses + 1
 IF NOT ("CLASSDEFS." $ SET("Classlib"))
 SET CLASSLIB TO ClassDefs.VCX
 ENDIF
 oObject = CREATEOBJECT("cusMinimal")
 ENDDO

 SET CLASSLIB TO

In these tests, the instantiated object is stored
to the same variable on each pass, meaning that we
don’t hold on to the object between passes (which,
of course, means that each object except the last is
destroyed inside the test loop).

The results of this group of tests make it obvious
that the slow part is opening the VCX. The first ver-
sion (1a), with a single SET CLASSLIB, is far faster
than any of the others. The only one even close is
1e, and it still completes only about half as many
passes in the same time. Version 1b, that issues SET
CLASSLIB before each call to CREATEOBJECT(), is
two orders of magnitude slower in the local case
and three orders of magnitude slower in the net-
worked case. With my computers, Test 1a averages
over 300,000 instantiations per second with every-
thing local, and around 250,000 instantiations per
second across the network. Test 1b averages over
7,000 instantiations per second in the local case,
and 330 instantiations per second in the networked
case.

The two versions that use NewObject(), 1c and
1d, get results very similar to case 1b. As with 1b,
running them locally is about an order of magni-
tude faster than running them across the network.

The cause of the slowness in cases 1b, 1c,
and 1d became apparent when I looked at the
results for 1e and 1f, the two cases that first check
SET(“CLASSLIB”) to see whether the VCX is
already available. In 1e, where it is, my machines
were able to instantiate over 170,000 objects per
 second. 1f, where the VCX is not already avail-
able and thus SET CLASSLIB is needed, completed
about half as many instantiations as 1b, 1c and 1d in
the local case; in the networked case, surprisingly,
it was the same order of magnitude as 1b, 1c, and
1d, but it actually managed about 25% more passes.

In other words, what makes NewObject()
slower is finding and opening the VCX. When the
file has to be found and opened before each instan-
tiation, things slow down considerably.

The one surprise in this group is 1c, where
the specified class library is already available. I’d
expect VFP to notice that the class library is already
open and not bother to open it. To understand why
this case is also slow, I tried a very different test.
I created a class with code in Init and Destroy to
show the current value of SET(“CLASSLIB”), as in
Listing 6.
Listing 6. This code in Init and Destroy helps us see how VFP
handles access to class libraries with NewObject().
DEBUGOUT PROGRAM(), "Before DODEFAULT()", ;
 SET("classlib")
DODEFAULT()
DEBUGOUT PROGRAM(), "After DODEFAULT()", ;
 SET("classlib")

I wrote a program (shown in Listing 7 and included
in this month’s downloads as TestSetClassLib.PRG)
to instantiate an object using NewObject(), first with
the appropriate class library not included in SET
CLASSLIB, and then with it included.
Listing 7. This code lets us see how NewObject() modifies
SET(“CLASSLIB”).
LOCAL o

DEBUGOUT "Test with NewObject"
DEBUGOUT "-------------------"

SET CLASSLIB TO AddlClasses
DEBUGOUT "Main before NO: ", SET("Classlib")
o=NEWOBJECT("cusnoteclasslib", "ClassDefs")
DEBUGOUT "Main after NO: ", SET("Classlib")
o=.null.
SET CLASSLIB TO
DEBUGOUT " "

DEBUGOUT "Test with NewObject with " + ;
 "classlib already set"
DEBUGOUT "-------------------"

SET CLASSLIB TO AddlClasses, ClassDefs
DEBUGOUT "Main before NO: ", SET("Classlib")
o=NEWOBJECT("cusnoteclasslib", "ClassDefs")
DEBUGOUT "Main after NO: ", SET("Classlib")
o=.null.
SET CLASSLIB TO

Figure 1 shows the output from the program
and explains why case 1c is slow. In order to ensure
that the right class is instantiated, VFP rearranges
the order of the class libraries (which, presumably,
requires reopening one or more). After the object is
instantiated, the original order of the list is restored.

The lesson here is that if you can SET CLASSLIB
and have some assurance that it won’t change,
CREATEOBJECT() is the way to go. Next best is to

Figure 1. The underlined line, showing SET(“CLASSLIB”) during instantiation, shows that the necessary class library has been moved
to be first in the list of class libraries.

Page 4 FoxRockX March 2016

check for the library and SET CLASSLIB, if neces-
sary. In real applications, it’s likely that you’ll only
have to SET CLASSLIB the first time you use a par-
ticular library, and after that, it’ll be available.

All that said, it’s worth noting that even the
slowest cases here were capable of instantiating
my simple object hundreds of times per second. So,
in many cases, it doesn’t matter whether you use
 CreateObject() or NewObject(). My client’s appli-
cation, which involves instantiating thousands of
objects while the user waits, is an exception.

Where to store objects
The next question I considered was whether it mat-
tered how you store the object references, once
you’ve instantiated the objects. I tested storing to a
single variable (thus releasing each object when the
next was instantiated), storing each reference to a
separate variable, storing all references to an array,
storing all references to a collection that already
existed, and storing them to a new collection. I
tested these five cases with both CreateObject()
(tests 2a-2e) and NewObject() (tests 3a-3e). Listing
8 shows three CreateObject() cases: storing to mul-
tiple variables, storing to an array, and storing to an
existing collection.

Listing 8. Testing whether it matters where you put the variable
references.
CASE m.cTest = "2b"
 * CreateObject to multiple vars
 SET CLASSLIB TO ClassDefs.VCX
 nPasses = 0

 * Declare the necessary variables
 FOR nCount = 1 TO ObjectCount
 cVarName = "oObject" + ;
 ALLTRIM(TRANSFORM(m.nCount))
 LOCAL (cVarName)
 ENDFOR

 nStart = SECONDS()
 nEnd = CalcEndTime(m.nStart, TESTTIME)

 DO WHILE m.nEnd >= SECONDS()
 nPasses = nPasses + 1
 FOR nCount = 1 TO OBJECTCOUNT
 STORE CREATEOBJECT("cusMinimal") TO ;
 ("oObject" + ;
 ALLTRIM(TRANSFORM(m.nCount)))
 ENDFOR
 ENDDO

 SET CLASSLIB TO

CASE m.cTest = "2c"
 * CreateObject to an array
 SET CLASSLIB TO ClassDefs.VCX
 DIMENSION aObjects[OBJECTCOUNT]
 nPasses = 0
 nStart = SECONDS()
 nEnd = CalcEndTime(m.nStart, TESTTIME)

 DO WHILE m.nEnd >= SECONDS()
 nPasses = nPasses + 1
 FOR nCount = 1 TO OBJECTCOUNT

 aObjects[m.nCount] = ;
 CREATEOBJECT("cusMinimal")
 ENDFOR
 ENDDO

 SET CLASSLIB TO

CASE m.cTest = "2d"
 * CreateObject to an existing collection
 SET CLASSLIB TO ClassDefs.VCX
 oObjectCollection = ;
 CREATEOBJECT("Collection")

 nPasses = 0
 nStart = SECONDS()
 nEnd = CalcEndTime(m.nStart, TESTTIME)

 DO WHILE m.nEnd >= SECONDS()
 nPasses = nPasses + 1
 FOR nCount = 1 TO OBJECTCOUNT
 oObjectCollection.Add(;
 CREATEOBJECT("cusMinimal"))
 ENDFOR

 oObjectCollection.Remove(-1)
 ENDDO

 SET CLASSLIB TO

These tests didn’t show much new informa-
tion. The CreateObject() code was faster than the
NewObject() code operating locally by an order
of magnitude; similarly, the NewObject() version
run locally was an order of magnitude faster than
NewObject() across the network.

With CreateObject(), the variation from fastest
to slowest was less than an order of magnitude. Not
surprisingly, storing to a single variable was fast-
est. (One weakness in this code is the need to use
a name expression in the multiple variables case
rather than hard-coding the appropriate variable
name; that may slow down this test.) The slowest
CreateObject() version was 2e, which creates a col-
lection inside the loop and then adds each object to
the collection.

The network penalty with CreateObject()
wasn’t too big, varying from about 6% up to about
30%.

With NewObject(), the single variable version
was again fastest. But the difference between cases
was small. The real differences here were local vs.
network and between the two machines. As with
the first group of tests, when using NewObject()
and a locally stored VCX, my desktop machine
completed an order of magnitude more passes than
my notebook. (That’s actually surprising, given
that the notebook has a solid-state drive, and the
desktop does not.)

Once again, tests using a local VCX were an
order of magnitude faster than those using a VCX
stored elsewhere on the network.

The bottom line here is that where you store
object references doesn’t matter very much. Use
whichever works best for you.

March 2016 FoxRockX Page 5

Instantiation from multiple
classes
My next set of tests was designed to see whether
instantiating objects from more than one class
changed the timing equation. The previous tests
worked with cusMinimal, a subclass of Custom
with no added PEMs and no changes to the default.
I added a second class to ClassDefs.VCX; cusSmall
is also subclassed from Custom, but has four
custom properties added.

I then repeated the first three groups of tests
(except for 1e and 1f), with each pass instantiating
one object from cusMinimal and one from cusSmall.
For example, Listing 9 shows test 4d, which
measures performance of NewObject() without a
corresponding SET CLASSLIB.

Listing 9. Test groups 4, 5 and 6 look at performance when
instantiating from multiple classes in the same class library.
CASE m.cTest = "4d"
 * NewObject() without SET CLASSLIB
 nPasses = 0
 nStart = SECONDS()
 nEnd = CalcEndTime(m.nStart, TESTTIME)

 DO WHILE m.nEnd >= SECONDS()
 nPasses = nPasses + 1
 oObject = NEWOBJECT("cusMinimal", ;
 "ClassDefs.VCX")
 oObjectT2 = NEWOBJECT("cusSmall", ;
 "ClassDefs.VCX")
 ENDDO

On the whole, these tests give similar results
to the earlier tests. Because two objects are being
instantiated on each pass rather than one, they
complete about half as many passes in the same
time as the earlier tests, though some actually do
better than that.

Object destruction
I also compared various ways of destroying objects
I’d instantiated. Many of the earlier tests included
implicit destruction of objects, but I wanted to test
in a more controlled way.

For each group of destruction tests, I held the
method of instantiation and the storage method
constant, and varied the ways of destroying the
objects. The first group (tests 7a to 7c) involved
objects stored in distinct individual variables. I
tested destroying them with RELEASE ALL (actu-
ally, RELEASE ALL LIKE since I couldn’t release
all variables used for the test), with individual
RELEASE commands and by setting each to .null.
Listing 10 shows the first of these tests, using
RELEASE ALL LIKE.

Listing 10. The first group of object destruction tests looks
at objects stored in individual variables. Here, they’re all
destroyed by releasing all the variables.
CASE m.cTest = "7a"
 * Destroy via RELEASE ALL. Can't test unless
 * we use RELEASE ALL LIKE.

 SET CLASSLIB TO ClassDefs.VCX
 nPasses = 0

 * Declare the necessary variables
 nStart = SECONDS()
 nEnd = CalcEndTime(m.nStart, TESTTIME)

 DO WHILE m.nEnd >= SECONDS()
 nPasses = nPasses + 1

 FOR nCount = 1 TO ObjectCount
 cVarName = "oObject" + ;
 ALLTRIM(TRANSFORM(m.nCount))
 LOCAL (cVarName)
 ENDFOR

 FOR nCount = 1 TO OBJECTCOUNT
 STORE CREATEOBJECT("cusMinimal") TO ;
 ("oObject" + ;
 ALLTRIM(TRANSFORM(m.nCount)))
 ENDFOR

 * Now release
 RELEASE ALL LIKE oObject*
 ENDDO

 SET CLASSLIB TO

I found no significant difference between the
three approaches. The differences between the two
machines and between different runs on the same
machine were as large as the differences between
the various approaches.

The next set of tests (8a through 8c) looked at
objects stored in a collection. Again, I tried three
ways of destroying them: by releasing the collec-
tion variable; by calling the collection’s Remove
method, passing -1 as a parameter, so all were
removed at once; and by setting the collection vari-
able to .null. Note that in each of these cases, you
end up with something slightly different. In the
first case, not only are the objects gone, but so is the
collection. In the second case, you’re left with an
empty collection. In the third case, the variable that
held the collection still exists, but no longer holds a
collection. Listing 11 shows test 8b, a call to the col-
lection’s Remove method.

Listing 11. Here, we remove all objects from the collection,
causing them to be destroyed.
CASE m.cTest = "8b"
 * Objects in collection, REMOVE
 SET CLASSLIB TO ClassDefs.VCX

 nPasses = 0
 nStart = SECONDS()
 nEnd = CalcEndTime(m.nStart, TESTTIME)

 DO WHILE m.nEnd >= SECONDS()
 LOCAL oObjectCollection
 oObjectCollection = ;
 CREATEOBJECT("Collection")
 nPasses = nPasses + 1
 FOR nCount = 1 TO OBJECTCOUNT
 oObjectCollection.Add(;
 CREATEOBJECT("cusMinimal"))
 ENDFOR

 oObjectCollection.Remove(-1)
 ENDDO

 SET CLASSLIB TO

Page 6 FoxRockX March 2016

As with the prior group, the differences
between the two machines, between the local and
the networked cases, and between different runs
of the same test were larger than any differences
between the different approaches.

The final group of tests compared two
approaches to destroying members of a collection
one by one. Both tests use the collection’s Remove
method. Test 9a loops backward, removing the
specified item, while test 9b loops forward, always
removing the first item. Listing 12 shows test 9a,
looping backward. (Removing a specified item
requires looping backward because the size of the
collection changes with each item removed.)

Listing 12. In removing collection items, there’s no significant
performance difference between looping backward removing
the nth item on each pass, and looping forward, always remov-
ing the first item.
CASE m.cTest = "9a"
 * Objects in collection, RELEASE
 SET CLASSLIB TO ClassDefs.VCX

 nPasses = 0
 nStart = SECONDS()
 nEnd = CalcEndTime(m.nStart, TESTTIME)

 DO WHILE m.nEnd >= SECONDS()
 LOCAL oObjectCollection
 oObjectCollection = ;
 CREATEOBJECT("Collection")
 nPasses = nPasses + 1
 FOR nCount = 1 TO OBJECTCOUNT
 oObjectCollection.Add(;
 CREATEOBJECT("cusMinimal"))
 ENDFOR

 FOR nCount = OBJECTCOUNT TO 1 STEP -1
 oObjectCollection.Remove(m.nCount)
 ENDFOR
 ENDDO

 SET CLASSLIB TO

Again, there was no significant difference
between the approaches.

What about PRGs?
I wondered whether the same rules would apply
to classes defined with code in PRG files, so I cre-
ated corresponding PRG-based classes and modi-
fied the tests to use those with SET PROCEDURE.
The class definitions are included in this month’s
downloads as ClassDefs.PRG, while the tests are in
ObjectCDTestsPrg.PRG

I found that the same basic rules applied, in
terms of which approaches were faster. What was
a surprise to me was that in most cases, using VCX-
based classes was faster. Specifically, in about 10%
of my test runs (where a test run is the combina-
tion of a particular case, a particular machine and a
particular setting of across the network or not), the
PRG-based tests completed more passes. In those
cases, the difference was mostly within 10%. A few
tests were within 1%, close enough to be consid-
ered equivalent.

In the remaining roughly 87% of the tests, the
VCX-based version completed more passes. These
tests averaged about 85% faster, but ranged from
completing a little more than 1% more passes up
to completing about four times (400%) as many
passes.

All of the tests where PRG was faster than VCX
were run on my laptop and all but one were con-
ducted across the network. That suggests to me
that the real difference here might have to do with
the fact that the PRG is 140 bytes, while the combi-
nation of the VCX and VCT is more than 4 KB.

The bottom line
The most important lesson here, I think, is that
object creation and destruction is fast. Except when
looking for class libraries across a network, VFP
can create or destroy thousands, tens of thousands,
even hundreds of thousands of objects per second.

The second big takeaway is that SETting
CLASSLIB once and using CreateObject() is an
order of magnitude faster than using NewObject().
Finding a class library is actually the slow part;
when doing so across a network, you lose another
order of magnitude.

That instantiating a class from a VCX is faster
than doing so from a PRG is worth more investiga-
tion. One case to test is the difference between hav-
ing the class defined in the same PRG that uses it
vs. having it in a separate PRG.

Another open question is how all this works
when the class has lots of properties and custom
code. These tests looked only at small classes.

Finally, the slowness on closing my client’s
application turned out to have nothing to do with
object destruction. About the same time I was per-
forming these tests, I found that the code to save
the data was doing a lot of extra work; a couple of
minor tweaks to ensure that only changed data is
resaved sped things up considerably in most cases.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s Solu-
tions, LLC. She has developed and enhanced numerous
Visual FoxPro applications for businesses and other orga-
nizations. Tamar is author or co-author of a dozen books
including the award winning Hacker’s Guide to Visual Fox-
Pro, Microsoft Office Automation with Visual FoxPro and
Taming Visual FoxPro’s SQL. Her latest collaboration is
VFPX: Open Source Treasure for the VFP Developer, avail-
able at www.foxrockx.com. Her other books are available
from Hentzenwerke Publishing (www.hentzenwerke.com).
Tamar was a Microsoft Support Most Valuable Professional
from the program's inception in 1993 until 2011. She is one
of the organizers of the annual Southwest Fox conference.
In 2007, Tamar received the Visual FoxPro Community Life-
time Achievement Award. You can reach her at tamar@the-
granors.com or through www.tomorrowssolutionsllc.com.

